Technologie

Laser (akronym z anglického Light Amplification by Stimulated Emission of Radiation, tj. ‚zesilování světla stimulovanou emisí záření‘) je optický zdroj elektromagnetického záření tj. světla v širším smyslu. Světlo je z laseru vyzařováno ve formě úzkého svazku; na rozdíl od světla přirozených zdrojů je koherentní a monochromatické, z toho tedy vyplývá že laser je optický zdroj emitující fotony v koherentní paprsek. Princip laseru využívá zákonů kvantové mechaniky a termodynamiky.

 

Princip laseru

Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie.

Zdrojem energie, který může představovat například výbojka, je do aktivního média dodávána („pumpována“) energie. Ta energeticky vybudí elektrony aktivního prostředí ze základní energetické hladiny do vyšší energetické hladiny, dojde k tzv. excitaci. Takto je do vyšších energetických stavů vybuzena většina elektronů aktivního prostředí a vzniká tak tzv. inverze populace.

Při opětném přestupu elektronu na nižší energetickou hladinu dojde k vyzáření (emisi) kvanta energie ve formě fotonů. Tyto fotony následně interagují s dalšími elektrony inverzní populace, čímž spouštějí tzv. stimulovanou emisi fotonů, se stejnou frekvencí a fází, i u nich.

Díky umístění aktivní části laseru do rezonátoru, tvořeného například zrcadly, dochází k odrazu paprsku fotonů a jeho opětovnému průchodu prostředím. To dále podporuje stimulovanou emisi, a tím dochází k exponenciálnímu zesilování toku fotonů. Výsledný světelný svazek pak opouští rezonátor průchodem skrze výstupní polopropustné zrcadlo.

Ke vzniku oscilací a generování laserového výstupu však musí být splněna tzv. prahová podmínka minimálního zisku, která říká, že během periody oběhu fotonu rezonátorem musí být hustota fotonů v rezonátoru rovna, nebo větší, než počáteční stav (Jinak by nebylo možné z rezonátoru odvádět energii).

 

Rezonátor

Ve většině laserů světlo opakovaně prochází tzv. rezonátorem – optickou dutinou vymezenou zrcadly. V nejobvyklejších případech je rezonátor tvořen dvěma zrcadly, z nichž je jedno zcela odrazivé a druhé částečně propustné (aby světlo vznikající v laseru mohlo unikat ven a laser tak svítil). Existují také kruhové rezonátory.

Jako nepropustné zrcadlo se obvykle používá dielektrické zrcadlo, zvláště ale pro delší vlnové délky (μm) není ale dielektrická struktura realizovatelná a proto se používá leštěný kov, např zlato nebo měď. V některých případech (laserová dioda) má dostatečnou odrazivost samotné rozhraní aktivního prostředí se vzduchem, neboť reflexivita rozhraní závisí na indexu lomu materiálu podle Fresnelových vzorců.

Některé lasery s dostatečně velkým ziskem v aktivním prostředí rezonátor nepotřebují a pracují v režimu zesílené spontánní emise – to znamená, že záření stačí jediný průchod k získání dostatečné intenzity. Patří mezi ně např. dusíkový nebo měděný laser. Rezonátor se samozřejmě také běžně nepoužívá u laserových zesilovačů, které slouží jen k průchodovému zesilování vstupujícího koherentního svazku.

Zrcadla v rezonátoru zdaleka nemusí být rovinná. Naopak, v řadě případů je výhodné použít nejen konkávní, ale i konvexní zrcadla. Stabilita záření v rezonátoru závisí na poloměrech křivosti zrcadel a délce rezonátoru.

 

Použití laserů

Využití laserů je široké, zejména se jedná o následující obory:

  • průmysl – řezání, vrtání (vysoké koherenci a monochromatičnosti laserového paprsku lze laserovým paprskem soustředit na malé ploše velké množství energie)
  • medicína – zejména v dermatologii, stomatologii. oftalmologii, chirurgii
  • vojenství – vojenské lasery (zbraňové systémy) pro pozemmní vojsko, námořnictvo a letectvo s výkonem až 100 kW, označování cílu, navádění raket a munice ap.
  • spotřební elektronika – tiskárny, záznamová média ap.
  • datové přenosy prostřednictvím optických vláken
  • výzkum
  • kosmetika

 

Bezpečnostní rizika

Bezpečnostní symbol laseru třídy 2 a vyšší

Pokud laser pracuje na určitých vlnových délkách, na které je schopno se oko soustředit a které mohou být dobře soustředěny sítnicí a rohovkou oka, pak může vysoká koherence a malý rozptyl laserového paprsku u některých typů laserů způsobit, že je přijímaný paprsek soustředěn pouze do extrémně malého bodu na sítnici. To vede k bodovému přehřátí sítnice a k trvalému poškození zraku. Lasery jsou rozděleny do bezpečnostních tříd:

  • třída I: možný trvalý pohled do svazku laserového paprsku
  • třída II: kontinuální a viditelné záření, přímý pohled do zdroje možný, oko ochrání mrkací reflex
  • třída III:
    • a) totéž jako třída II, ale oko již může být poškozeno při pohledu do zdroje pomocí optické soustavy (např. dalekohled)
    • b) nebezpečí poškození oka, nutno používat ochranné pomůcky (i při pozorování odrazu), max. emise 0,5 W
  • třída IV: totéž jako třída III b), emise překračuje výkon 0,5 W

Běžně dostupné lasery bývají maximálně ve třídě III (optické soustavy CD přehrávačů).[6] Výkonné lasery (třídy IV) jsou schopné způsobit popáleniny,[6] řezné nebo tržné rány, případně způsobit požár. Řada takových laserů je buzena nebezpečnými látkami nebo vysokým napětím v řádu desítek kilovoltů.

 

Článek citován z české wikipedie. https://cs.wikipedia.org/wiki/Laser